
ELIMIA: exploring a remote location with an autonomous Lego robot

Giulio Zhou
University of Edinburgh
s1775060@ed.ac.uk

Abstract— This report proposes a prototype of an au-
tonomous Lego robot capable of exploring a predefined area
containing obstacles. The robot is able to navigate through the
map avoiding them, detecting special marks on the ground
(Points of Interest) and virtually transmitting information to a
satellite by aligning the robot’s antenna to it. To accomplish
the above, the robot uses a number of sensors: two IR sensors
for the obstacle avoidance and localisation, two light sensors
and a camera for detecting the Points of Interest and two light
sensors for measuring the wheels speeds. Due to the high level
of inaccuracy, some of the methods proposed in this report
were not actually used to complete the task. The robot was
tested 10 times and it was able to detect, on average, 2 POIs.
However, it was incapable of aligning its antenna on the second
and third POIs. The main issue of the robot is that it could
not model the drift properly which resulted in the divergence
from the computed route and the drop of the accuracy for the
localisation performance.

I. INTRODUCTION

The main objective of this project was to build and
program an autonomous robot able to detect specific points
of interest (POIs) and virtually transmit data to a satellite.
Thus, the robot should be capable of navigating within a
defined area avoiding any obstacles, spot the POIs, compute
its position and orientation and use this information to align
its antenna to a satellite (a fixed position in the sky).
To achieve the above, the robot is equipped with two IR
sensors for the obstacle avoidance and localisation, two light
sensors for detecting the POIs on the ground, two light
sensors for calculating the actual wheels speed and a camera
to spot the POIs and, eventually, calibrate the trajectory and
position of the robot.
The development process was divided into minor and major
milestones. The focus of the first major milestone was to
provide basic functions to the robot, allowing it to move
while avoiding obstacles, as well as for detecting POIs on
the ground and, having all the information regarding the
position, align the antenna. The final milestone consisted in
the integration of all the different software components and
the implementation of a localisation system which allows the
robot to complete all the tasks independently.
During the final test and presentation of the project, the robot
was able to detect only one of the three POIs in the arena.
The original software implementation differs quite heavily
from the actually used code. In fact, the latter is a simplified
version of the originally planned one. The grid localisation
was not used, instead, the robot uses an odometry-based
localisation which relies on the accuracy of the movement to
retrieve its position. The speed measurements through light
sensor readings and the POI detection with the camera were

also discarded due to their low level of accuracy.
To navigate the robot a strict number of tracks which cover
all the main area of the arena and the most probable zone in
which the POIs can be positioned.
The team developed the different software components sepa-
rately and tried to integrate them once they were completed.
However, this caused several issues to the project.

Fig. 1: Front, IR sensors highlighted

II. METHOD

A. Robot architecture

Figure 1 shows the final version of the robot.
The design of the robot is meant to be as compact as possible
but at the same time robust. The length of the robot is 30cm
(not considering the antenna), the width (wheel to wheel) is
23 cm and the hight (ground to antenna base) is 21 cm.
The robot is composed by two IR sensors, four light sensors,
a camera, a servo motor, a hall effect sensor and a light
bulb, in addition to the Fit-Pc2, the Phidget Interface kit, the
power, servo and motor boards, and a battery.
The main body of the robot is 13 cm width. The IR sensors
are positioned on the front of the robot, Figure 1 at 11 cm
from the ground rotated respectively by 45◦on the left and the



Fig. 2: Bottom, light sensors and bulb highlighted

Fig. 3: Left side, light sensor highlighted

right. On the front, in the centre, it is positioned the camera
at 16 cm from the ground, rotated by 45◦down. Two of the
light sensors and the light bulb are positioned at the bottom
of the the robot, Figure 2, at 4 cm from the ground. The
other two light sensors are put in front of the main wheels
at a distance of 0.8 cm from it, Figure 3.
The wheels are attached to the motors with a ratio of 1:13.5,
Figure 4, and the hall effect sensors is attached to the right
wheel gears with a ratio with the wheel of 4.5:1.
The antenna is attached to the servo motor with a 1:1 ratio.

B. Control flow

To complete the task the robot uses a hybrid approach
to the problem, which means that the planning part takes
place before the actual movement and sensor readings. Some
information is available to the robot: the dimension of the
arena, the obstacles’ and antenna’s positions, the starting
position of the robot and roughly the area where the POIs
are. Given this information, the robot chooses a destination
and select the route to follow. During the actual navigation,
the robot uses its sensors to detect obstacles and eventual
POIs (which exact position is unknown) while updating its
position. Figure 5 shows the processes and decisions made
by the robot during the execution of the task.

Fig. 4: Right wheel with light sensor, gears and motor
position

Fig. 5: Control loop

C. Routing

Having different types of information at our disposal, it
is possible to calculate the directions from one point to
another. For this reason, the routing problem was reduced
to a “shortest path problem”. The map of the arena can
be represented by a graph where each free space piece is
connected with the ones adjacent to it. Independently by the
algorithm used, the computational cost is high due to the
high-dimensionality of the graph. It is possible to reduce
the number of nodes in a proportionally way, but still, the
computation is not fast enough and it reduces the accuracy
of the model.
To overcome this problem, the model created allows the robot
to navigate through a very limited number of paths. The
graph built consists of 10 nodes and 10 arcs as shown in



Fig. 6: Map of the arena with waypoints and predefined
tracks

Figure 6. Although not all the spots in the arena are covered,
it provides a reasonable approximation of the paths the robot
can take.
The robot’s routing system is hence based on a number of
waypoints through which it has to cover in order to reach
its destination. If its position is not on a track, it reaches
the closest waypoint, it calculates the shortest path from
one waypoint to another using the Dijkstra’s algorithm, and
finally uses the computed directions to the destination.

D. Movements accuracy and odometry

The accuracy of the movements plays a fundamental role
in the navigation process. Having decided the track to follow
is not enough to determine whether the robot will be able
to reach the predefined destination. In fact, it is necessary to
address two major problems: distance travelled and drift.
The movements of the robot are based on time making it
hard to determine the absolute distance travelled by the robot
within a certain time interval.
The solution proposed is to calculate the real speed of the
wheel. To achieve this, light sensors were used as rotation
sensors by detecting the reflective tapes attached to the
wheels, Figure 3. The distance travelled is given by s =
4.1(90/dt)t where dt is the time necessary to the wheel
to rotate by 90◦, 4.1 is the radius of the wheel and t is
the time travelled. In addition to the light sensors, the hall
effect sensor estimates the distance travelled by counting
revolutions, each of which corresponds to 5.72 cm travelled.
On the other hand, despite the fact that the power provided to

the motors is the same, the actual velocity of the two wheels
do not rotate at the same velocity resulting in the robot
not able to drive perfectly straight. Probably causes are the
robot construction (e.g. it’s not balanced) or little differences
in the motors themselves. To straighten the trajectory of
the robot it is necessary to calibrate one of the wheel
velocity, Figure 7. The adjustment amount is calculated by
a proportional controller p = Kp log(|error| + 1), where
Kp is a fixed constant. The error is not directly multiplied in
order to model better the non-linearity of the relation between
motor power and wheel speed.
Unless having perfect light conditions, the light sensors can
fail to detect the reflecting tape on the wheel, for this reason,
the robot discharge unreasonable error values through a
threshold.

Fig. 7: Decision tree to choose which wheel to adjust

E. Localisation

The first method to determine the position of the robot
was a grid-based approach. For this purpose, the arena was
divided into 5x5cm2 grids each of which associated with a
probability, resulting in a map similar to Figure 6. The grid
is initialised with 0 probability except for the starting grid
which is set to 1. At each movement step, all the probabilities
are shifted towards the direction of the robot, it then retrieves
the IR measurements to detect the surrounding objects and
updates the 3x3 around the robot’s estimated position. The
probability of each grid corresponds to the following joint
probability P (x|zl, zr) where zl, zr are the left and right
sensor readings, which is solved applying Bayes Rule. The
result is then a combination of the P (zl,r|x), which is a
Gaussian and where the variable is the difference between
the actual sensor reading and the raycast for a given grid,
and P (x), the prior probability of the grid.
The second approach is a localisation based on odometry.
The position estimate is then corrected with measurements
provided by the IR sensors.

F. POI detection

The main system used to detect the POIs is the combi-
nation of light sensor and light bulb positioned. The robot



calculates the average value detected by the two sensors and
keeps updating it throughout the entire task execution. When
a sensor detects a drastic increase in the sensor reading, a
POI is found.
As a support to the light sensors, the camera attempts to spot
a POI. The image captured by the camera is preprocessed
by converting the RGB image into HSV, followed by the
application of the Otsu thresholding [1] in order to segment
the image into different regions: walls, ground and eventual
POI. Lastly, the region on top of the image (which represent
the wall) is filled leaving only the POI highlighted if present.
If a POI is detected by the camera, the robot computes also
the distance necessary to reach the POI, this information is
retrieved by converting the image coordinates of the POI into
physical ones using CV2.GETPERSPECTIVETRANSFORM.

G. Obstacle avoidance

The IR sensors are able to detect objects in a range
between 10cm and 80 cm. When one of the sensors detects
an object within 20cm distance, the robot turns by 20◦in
the opposite direction, and repeat until the path is free. If
both sensors detect an obstacle, the robot goes backwards
by 15cm and turn left by 40◦.

200 300 400 500 600
sensor value

10

15

20

25

30

35

40

di
st

an
ce

Fig. 8: Function to compute the distance given the IR
readings

H. Antenna alignment

The alignment of the antenna consists of two movements,
turn the robot and use the servo motor to point the antenna
towards the satellite. Both rotation degrees are computed
through simple trigonometry equations. Given the position
and orientation of the robot and the coordinates of the satel-
lite, the robot calculates the distance between itself and the
satellite and uses the formula θ = arctan2(‖v1‖‖v2‖,v1 ·
v2) to retrieve the angle.

III. RESULTS

A. Drift

Without any obstacles, with a full battery and both motors
at full speed, the robot drifts averagely 30cm each meter. To
improve the performance of the movement, it is possible to

reduce manually the power of the fastest wheel, which is,
in our final design, the left one. However, the tests have
shown that it is impossible to define the difference in power
necessary to the wheels to move at the same speed a priori.
More than 95% of the times, the robot kept drifting. We
speculate that the there are variables that depend on the
motors themselves.

B. Speed estimation

The light sensors for the speed estimation has been tested
under different conditions:
-One wheel in dark environment: on average, 80% of the
time the speed is not updated due to the error threshold. The
rest of the time the system breaks, what happens is that the
wheel under good light keep slowing down until it stops;
-On normal condition with initial manual straightening: the
robot goes straight for around 2 m but then one of the
wheel’s speed begins to oscillate. The oscillation introduces
some drifts and although it tries to keep the wheels at the
same speed, it cannot recover from the error accumulated. In
addition, on an average of 1 test out of 5, the system breaks
with the same behaviour as above. Overall, the robot can
drive 4m with drifting 30-40 cm.

C. Localisation

The grid localisation has been tested with different map
resolutions, however, none of these provided satisfying
results. The main problem found is the tradeoff between
accuracy and computational cost. The lower the resolution
of the map the less is the model accurate. As a consequence,
it is impossible to determine neither the position nor the
orientation. On the other hand, reducing the grid size
provides a reasonable localisation of the robot thanks to the
high accuracy of the raycast. The tests have shown that a
map with 5x5cm2 grid is sufficient to determine the pose
of the robot but on average it requires 5 sec to update,
while an even smaller 1x1cm2 grid requires more than 1 min.

The odometry-based localisation provides instead an ad-
equate estimation of the pose of the robot and does not
require any additional computational cost. On average, after
one minute of testing in the arena, the estimated position was
off by 35 cm from the real one.

D. POI detection

The light sensors for detecting the POIs succeded in all
tests.
The use of the camera for detecting the POI did not perform
as hoped. Although it can detect effectively the POI in the
image if present, the number of false positive is so high
that the overall accuracy of dropped under 50% makes it
impossible to use it in the task. The false positives are given
by the similarity of some pattern on the ground to the POI
(e.g. shadows).



E. Complete test

Based on the previously showed results, the grid locali-
sation, the camera, the speed measurement system and the
control loop feedback for the motors (which depends entirely
by the measured speed) were not used.
Starting from the home position and an orientation of 90◦,
the main task was tested 10 times. The robot was able to
detect the first POI and align the antenna to the satellite 9
times. Nonetheless, it was able to reach the second and third
POIs only 6 and 4 times respectively and to align the antenna
just once at the second POI and never at the last one.

IV. DISCUSSION

Despite the fact that the robot was able to complete the
task once and, on average, was able to detect two POIs
at each test, we can state that project failed. Some of the
originally implemented major software components were
discarded due to their high inaccuracy. For this reason,
although the robot could perform perfectly the POI detection
on the ground, the alignment of the antenna given the pose,
the obstacles avoidance and the computing of the route, the
rest of code was not sufficient to the robot to complete the
task.
To sum up, the core problem of the robot, which we were
not able to solve, is the drift, in fact, if the robot could move
precisely, the localisation would’ve improved significantly
permitting the robot to detect the POIs which were on the
predefined tracks and align correctly the antenna.

A. Improvements

1) Robot design: The design did not work well as ex-
pected at the beginning of the project. We believe that
the 3-wheel design contributed significantly to the drifting
problem. Furthermore, the design did not allow an easy
maintenance of the hardware components and the robot was
not well balanced. A 4-wheel design would have allowed
more accurate movements.

2) Speed measurements: Measuring the actual speed of
the wheels was a good idea. The actual code for this task
is working however it could not provide reliable information
due to the inaccuracy of the sensors readings. In fact, the
major con was that the light sensors needed an optimal
lighting to generate the correct values. The design with light
sensor was chosen to avoid the rebuild of the entire robot
since it was a feature introduced in the latest stage of the
development.
More reliable designs to retrieve the rotation speed of the
wheel could be one that allows the sensors to have only
light/no light readings or that uses buttons instead of the
light sensors.

3) Speed sync: For this project, a simplified version of a
PID control was implemented for the synchronisation of the
wheel speed. The error in the implemented version could not
reach 0, for this reason adding the Integral component would
improve the performance of the controller. In addition, the
proportional constant Kp could have been tuned more.

4) Localisation: To enhance the accuracy of the grid
localisation, more sensor readings should have been used.
The main problem was that many grids did not “die” as
fast as expected, this resulted in the spreading of grids with
high probability making hard to determine the most likely
position. Combining more sensor data would have cut off
the most unlikely grids.
The odometry-based localisation worked decently, it did not
work perfectly because of the drift.

5) POI camera detection: For the objective of this project,
the POI detection through vision wasn’t necessary. Neverthe-
less, it could have improved the efficiency of the robot by
adjusting the trajectory when it detects a POI. The amount
of false positive has to be reduced drastically, a possible
improvement could be a dimension threshold to cut off all
the “POIs” too small, or introducing a more accurate shape
analyser.

REFERENCES

[1] Vala, Miss Hetal J., and Astha Baxi. ”A review on Otsu image
segmentation algorithm.” International Journal of Advanced Research
in Computer Engineering & Technology (IJARCET) 2.2 (2013): pp-
387.


